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The equations governing the transients in the concentration, current and potential response of a porous 
flow-through electrode at the limiting current for a single reactant in a well-supported electrolyte have 
been solved. It was assumed that a potentiostatic step was applied to an electrode with a uniform feed 
concentration. The dispersive flux of reactant was assumed to be negligible but double-layer charging 
effects were taken into consideration. If the double-layer time constant is much less than the fluid 
residence time (vC/et~ .~ 1), it is quantitatively shown that the capacitive current may be neglected in 
interpreting the current-time response of the electrode when exanained in the fluid residence time 
frame. If the entire electrode is to operate at the limiting current, it is quantitatively shown that the 
solution phase ohmic drop can become significant early in the transient such that secondary reactions 
may become important. The ability to interpret I versus t data in terms of the limiting current species 
mass transfer coefficient is removed under these conditions. The results support the qualitative argu- 
ments made by Newman and Tiedemann in their comprehensive review article on porous flow-through 
electrodes. Finally, it is shown that ln(Faradaic current) versus t can be approximately linear in a limited 
time span, although no useful information can be obtained from such a plot. 
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specific interfacial area (cm z cm -3) T 
concentration (mol cm -3) v 
feed concentration (mol cm -3) x 
double-layer capacitance (F cm -2) z 
reactant diffusion coefficient (cm 2 s -1) e 
Faraday's constant (Coulomb/equivalent) rR 
solution phase current density (A cm -2) rc  
dimensionless total current density K 
(Equation 9) 71 
mass transfer coefficient (cm s -1) % 
electrode length (cm) ~1 
number of electrons transferred in reaction ~2 
bed P6clet number, v/aDo ~P2 
stoichiometric coefficient of reactant 
bed Sherwood number, ekrn/aDo O) 
time (s) (ss) 

dimensionless time, m/eL 
superficial bed velocity (cm S -1) 

streamwise co-ordinate (cm) 
dimensionless streamwise co-ordinate, x/L 
bed porosity 
fluid residence time, Le/v 
double-layer time constant, aL2C/• 
solution phase conductivity (ohm -I cm -1) 
overpotential r 1 -- q~2 (V) 
overpotential at z = 0 (V) 
matrix phase potential (V) 
solution phase potential (V) 
dimensionless solution phase potential, 
02~sR/(-- enFDoCv) 
condition at t = 0 (as superscript) 
steady-state condition (as superscript) 

1. Introduction 

Chu et at [ 1 ] have outlined a procedure which, they claim, may be used to measure the limiting current 
mass transfer coefficient in a flow-through, packed-bed electrode (or in their nomenclature, the equiv- 

0021-891X/81/020145-08502.80]0 �9 1981 Chapman and Hall Ltd. 145 



146 P.S. FEDKIW 

alent diffusion layer thickness). They applied a slow potentiostatic ramp to a flow-through electrode 
packed with graphite particles on to which Cu 2§ was deposited. The counter-electrode was placed 
upstream of the fluid inlet to the bed and the reference electrode was at the fluid exit. The mass transfer 
coefficient, it is claimed, can be calculated by matching the experimentally measured transient current 
to that predicted from solving the dispersion-free mass balance for Cu 2§ at the limiting current. (It should 
be noted, however, that Chu et at used steady-state data to determine the mass transfer coefficient from 
their single-pass configuration.) 

Newman and Tiedemann [2] have qualitatively remarked that one must be careful in interpreting the 
mass transfer coefficient which results from the transient current for three reasons: (a) at short times, 
double-layer charging will contribute an uncompensated component to the total current, (b) the transient 
mass transfer coefficient is inherently greater than the steady-state mass transfer coefficient for which 
reactors would be designed, and (c) during the initial current decay in the electrode, the ohmic potential 
drop in the solution can become so large that secondary reactions can take place at the front end (near- 
est the counter-electrode) while maintaining a sufficient driving force for limiting current deposition at 
the rear end. 

The purpose of this note is to examine in detail, on a quantitative basis, remarks (a) and (c) listed 
above. We shall derive the analytical equations for the transient ohmic potential drop, current and con- 
centration profile for a flow-through porous electrode operating at a limiting current, including the 
double-layer charging current. In doing so we will correct a mathematical omission of Chu et al. 's and 
present results for the transient solution potential drop using a mass transfer coefficient correlation 
recently developed [3] for.low Reynolds number flow. For lack of a better procedure at this time, we 
shall neglect the distinction between the steady-state and transient mass transfer coefficient. Further- 
more, we shall assume a potentiostatic step has been applied to the electrode. 

2. Analysis 

We shall present the same analysis as Chu et at except capacitive current effects will be included. The 
fluid enters the porous electrode through the face at x = 0 nearest the counter-electrode and leaves at 
the back face at x = L. Assume that a single reaction takes place in the flow-through electrode and that 
there is no dispersive flux of reactant. Hence the diffusion-like terms of Equation 25 (Reference [4]) 
will be neglected. Furthermore, because of its high conductivity, the matrix is assumed to be at  a 
uniform potential. The double-layer capacitance is assumed to be independent of potential. Finally, it is 
assumed that an inert electrolyte is present and hence migration effects and diffusion potentials may be 
neglected. Under these conditions the equations which govern the concentration, current and potential 
in the solution phase are given by [4] 

ac 0c 

0i._~2 = n__F akrac + aC O'q~l ( 
Ox SR Ot 

i2 ---- - - ~  
Ox 

These equations are to be solved subject to the following initial and boundary conditions: 

F o r t = 0  c = CF, r  = 0 

F o r t > 0  x = 0, c = CF, ~b1--~2 ------- 770 

O ( ~ l - ~ 2 )  _ 0. 
x = L, bx 

(2) 

(s) 

(4a) 

(4b) 

(4c) 
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At time equal to zero, the reactant concentration and potential are uniform throughout the electrode 
(Equation 4a). For all time greater than zero, a potential is applied to the electrode and reactant of 
concentration cF is introduced at the bed inlet where the reference potential is defined (Equation 4b). 
(This boundary condition on the potential is not identical to that used by Chu et al. who placed their 
reference electrode at the back face, but it is entirely equivalent and is chosen for convenience.) Since 
the counter-electrode is upstream of the feed, no current passes through the bed exit (Equation 4c). 

Equation 1 is hyperbolic and consequently the change in the reactant concentration will pass through 
the bed as a wave which travels at velocity v/e. The steady-state solution for the concentration profile 
will apply on the upstream side of the front while a transient solution will apply on the downstream 
side. The potential distribution will be more complex and will vary with time on both the upstream and 
downstream side of the front because the Faradaic and capacitive current lines must traverse the 
upstream side of the front in order to reach their end point at some position on the downstream side of  
the front. All Faradaic transients will disappear when the front reaches the back side of the bed at the 
residence time eL/v. [Equation 1 was solved by Laplace transforms to yield C(x, t).] 

The equation for the overpotential (qh -- ~2) can be generated by combining Equations 2 and 3 

nFatcmc + aC O~ (2a) 
K 8x z - sit 3t" 

Equation 2a is linear in ~ and consequently we can utilize a superposition to write 

r/ = r/C+r/V 

where rlc is the contribution to the overpotential from the capacitive current and ~F the overpotential 
from the Faradalc current. The ~7c term must satisfy Equations 4a-c whereas the ~TF term must satisfy a 
homogeneous Equation 4b along with Equations 4a, c. Posey and Morozumi [5] have presented the 
solution for rlc(X, t) and its resultant current. We use their results here. The problem for ~F was solved 
by Laplace transforms. 

The solutions to these equations will be written for three time domains: (a) 0 < t < ex/v, 
(b) eL/v > t > ex/v and (c) t > eL/v. In a dimensionless format, the solutions for the various time 
domains are as follows: 

2.1. Concentration and potential 

For 0 ~ < T < z  c -  exp(--aL(Sh)sT) 
CF e (Pe)B (5) 

Forz  ~< T~< 1 

no-- rl(z, T) 

-- enFDo CF /tCS R 

(6) 

[ -  aL (Sh)B 

- -  = exp 
CF 

aL 2 T] =z[a~Le (Pe)B--(1--T)(C-~- ) (Sh)B] exp[ "aL(Sh)B(Pe) B 
(7) 

(Pe)~ r -- aL (Sh)B 
+ (Sh) B lexp ~- ~ z -- 1] + H(T, z). 
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For T/> 1 _ =  [--aL(Sh)~zl c exp 
t 

~~ [z-~ {Pe)~] [--aL(Sh)Bz]{pe)~+H(T,z).  (8) 
-- enFDoCFfiCSR = (Pe)B + (Sh)BJ exp [ "~ ~ (Sh)B 

2.2. Total current density 

For T ~< 1 

is(0, T) 
1 =  = 

-- enFkmcF/s R 
(Pe)B{ 1-exp[-aL(Sh)B-s "--T_[p,,, ]} +eaL(1--T)exp[y-aL~T] +H'(T'O)" 

(9)  

ForT>~l  I = _enFkmcF/Sn = (Sh)n 1 - - e x p [  e (Pe)B 

Time is made dimensionless with respect to the fluid residence time ZR and H(T, z) and H'(T, 0) are the 
solutions of Posey and Morozumi for the dimensionless overpotential and current density, respectively. 

�9 rlb'n / : ~ ~  _2k~ (--1)~)co s / - / (T ,z )  = 
~..__o~F.~S,, {1 ~ o ( k + -  

[(k + �89 ~(1 - z ) ]  

x exp [ - (k  + �89 T~R/~'c]} (11) 

H'(T, O) = ~o~/L -- enFkracF[srt {2 ~ exp[-- (k + �89 }. (12) 
k=ff 

Here rc(aL2C/~) is the double4ayer time constant. 
The concentration, current and potential have been expressed in a dimensionless format to make the 

results more general. These quantities will depend upon the dimensionless mass transfer coefficient (the 
Sherwood number). A recently developed correlation [3] for the low Reynolds number mass transfer 
coefficient will be applied in this work to show the general trends predicted by the preceding equations. 
Fig. 1 is a plot of this correlation with a comparison with experimental mass transfer data. For further 
details, including the correlating equation, the reader is referred to Reference [3]. In any experiment 
with a given electrode the flow rate and hence the P~clet number is the usual independent variable. All 
results presented in this paper will use the P6clet number as the manipulated variable. 

3. Results and discussion 

3.1. Double-layer charging current 

Equations 9 and 12 show the conditions under which the capacitive charging current may be neglected 
when interpreting I versus t data collected in a flow-through porous electrode at the limiting current. If 
the time constant for double-layer charging rc is much less than the fluid residence time 7R, that is, 
aL(vC/eK) "~ 1, the capacitive current will occur over a short time span in comparison to the Faradaic 
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Fig. 1. Low Reynolds number mass transfer coefficient correlation (full lines). Taken from Reference [ 3 ]. 

transients and thus may be safely neglected. This, of course, presupposes knowledge of the double. 
layer capacitance. As the flow rate through the bed increases, the residence time decreases and there will 
be a flow rate where the capacitive current can no longer be neglected in a potentiostatic experiment. 
In the extreme situation where ZR/rc ~ 1, the Faradaic current will decay more rapidly than the 
capacitive current. Also, the capacitive current in a potentiostaticaUy ramped experiment will not 
completely decay to zero which adds another complexity to the interpretation of the transients. 

This discussion of  time scales is very appropriate for, as Newman and Tiedemarm point out, at very 
short times the capacitive current dominates the total current and a plot of /versus  t -1/2 should be linear. 
At times that are large in comparison to the double-layer time constant, yet very small in comparison to 
the fluid residence time, the current will decay exponentially with time. Thus a plot of lnI  versus t 
should be linear with a slope o f - -  7rz/4rc. 

3.2. Faradaic current 

Contrary to the presentation of Chu et  al., one is not assured that a plot o f l n I  versus t will be linear for 
times much larger than the double-layer time constant and still less than the fluid residence time. Let us 
assume that rR >> rC SO the capacitive current can be neglected. Fig. 2 is a semilog plot of  the dimension- 
less Faradaic current (I)  calculated from Equation 9 as a function of time for two packing depths each at 
two different Pdclet numbers. The capacitive current cannot be seen on this time scale. It is clear that 
In/versus t is not linear over the duration of  the transient. However, at small times (e.g., T ~ 0.2) such a 
plot of experimental data might be interpreted as linear. It should be emphasized however, that no 
significance can be attached to the slope of the curve in this 'linear' region. 

The transient current is more pronounced for the lower Pdclet number than at the higher Pdclet 
number because of  the more non-uniform reaction rate. The concentration throughout the bed is nearer 
the feed concentration as the Pdclet number increases. 
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Fig. 4. The ratio of the initial to steady-state solution phase ohmic potential drop in a porous flow-through electrode. 

3.3. Ohmic potential drop 

The maximum ohmic potential drop will occur at T = 0 when the maximum current is flowing through 
the electrode. The maximum potential drop can be calculated from Equation 6 evaluated at T = 0 and 
z = 1. Since the matrix potential is assumed constant, we find 

= - I ( 5 ~ t  ~ A e p ~  2 (Sh)~ (13) 
k " /  

(i) 
where A~2,raax is the initial dimensionless solution phase potential drop. Equation 13 indicates the 
solution potential response to the inital surge of  current and is plotted in Fig. 3. If  the bed is too long 
0arge aL) or the flow rate is too high (large (Sh)B) the overpotential at the front side of the electrode 
must be set very high in order to ensure a sufficient driving force for a limiting current deposition at the 
back side of  the electrode. Secondary reactions (e.g., Hz evolution) might then become significant at the 
front end of the electrode thus contributing an uncompensated current to the total current measure- 
ment. The limiting current mass transfer coefficient should not be extracted from such an experiment. 

^a~(ss) t h e  steady-state dimensionless ohmic potential drop, Fig. 4 presents the ratio of A~0raax to ~'2,max, 
as a function of the packing depth (aL) and flowrate (Pe)s. As the flow rate becomes very high (large 
(Pe)B) the reactant concentration throughtout the bed becomes more uniform and hence the Faradaic 
reaction more nearly resembles that near T = 0. The steady-state ohmic drop is always less than the 
initial transient potential drop. 

4. Alternative procedures 

If r R >> r c the capacitive-induced effects can be neglected in Equations 6 and 9. The resulting equations 
may be expanded for small T to Fred 
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A~b2 = - -  (Sh)B 2 + ~(Pe)B  [�89 ((Sh)B~ 2 - l(-~e)B ! + 1 ] r  + O(T 2) (14) 

aL (~)2 (Sh)B 
I - T +  O(T2). (15) 

From a p b t  of A~2 versus T we can determine the mass transfer coefficient from the slope, which must 
also be consistent with the value obtained from the intercept. This assumes that aL, e, and (Pe)B are 
known. Alternatively, from Equation 15t, the slope and intercept of  the I versus T curve at small times 
can be used to calculate (Sh)B and aL/e. The best procedure would be to combine the two to determine 
a self-consistent set of (Sh)B and aL. It must be emphasized however that the same caveats apply to 
these techniques as to that presented by Chu et al. 
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